**exponentiation**.

First, we are going to define the base

*b*and the exponent

*n*, also called index or power, and then, along with examples, go on with the exponent rules for the addition, subtraction, division, multiplication as well as the power of a power.

Finally, we will be discussing rational indices.

Read on to learn everything about exponentiations and exponential notation, and make sure to check out our exponent calculator right below:

## Exponent Definition

Let n be a positive integer and b a non-negative real number, then the exponentiation usually pronounced fully as “b to the power of n” is defined as follows:

^{n}= y

b to the power of n =

For example, with b = 5 and n = 4, we get 5^{4} = 5 × 5 × 5 × 5 = 625, pronounced in full as “five raised to the fourth power” or, for instance, “five raised to the index of four.”

A shorter form would be “five to the power four”, yet, because not only the word *raised* is often omitted, but also *power* and *index*, 5^4 typically reads as “five to the four” or “five to the fourth”.

**Exponent Definition**: The exponent n of a base number b is a number reduced in size above, to the right of the base, which indicates how many times to repeat the base in a multiplication.

When n = 2, we say *b squared* or *b to the square*, and if n = 3 we say *b cubed* or *b to the cube*.

With b = 6, 6 squared is 36 (6^2), and 6 cubed equals 216 (6^3).

Note that only n=-1,2, and 3 have their own terminologies.

When n equals -1 we say reciprocal, a special case of a negative index as discussed in the next section.

## Negative Exponents

A negative index of b ≠ 0 means the reciprocal, 1 divided by n times b; in particular, b^{-1} = 1 / b:

^{-n}= 1/b

^{n}

For example: 2^{-2} = 1/2^{2} = 1/4.

Calculate a negative index by getting the positive power, then take the reciprocal.

Swapping the sign of the exponent gives the reciprocal.

Observe that the reciprocal and the inverse of b^{n}, are not the same.

As the variable is the base b, the inverse of b^{n}, (b^{n})^{−1}, is b^{1/n} =

Note that for the exponential function b^n = y the variable is in the exponent n: b^n = y ⇔ log_{b}y = n. (b^{n})^{−1} = log_{b}y called the logarithm of b to the power of n.

In the next part of our article we are going to discuss integer representation.

## Exponential Form

Integers can be expressed in various ways, including, for instance, the factor form, standard form (means index form), which is synonym for exponential notation, and in scientific notation.

The number five hundred and twelve in expanded form is 512, in product form it can be written as, for example, 4 x 128, and using power notation it is 2^9.

The scientific notation is 5.12e+3.

Put simply, exponential form means displaying a number y as b^{n}; this notation is a method for writing really big and really small numbers in simple manner, e.g. 10^10 instead of 10000000000.

Next we have a look at the laws of exponents for the sum, difference, product and quotient of numbers in exponential form, along with the powers of zero as well as base 0 powers.

## Exponent Rules

For

Definition of power of 0: b^{0} = 1. Furthermore, b^{1} = b and 0^{n} = 0 (n > 0).

These rules are meant for simplifying exponents, and for each exponent rule, we are going to state the rule, followed by an example, highlighting special cases, in case there are any.

### Adding Exponents

b^{m+n} = b^{m} × b^{n}

The number b to the sum m+n of the powers equals b^{m} multiplied by b^{n}.

This law is known as *sum of powers* and explains how to add exponents.

For example: 2^{2+3} = 2^{2} × 2^{3} = 4 × 8 = 32 = 2^{5}

Special case: b × b^{n} = b^{n+1}

### Subtracting Exponents

b^{n-m} = b^{n} / b^{m},b ≠ 0

The number b to the difference n-m of the powers equals b^{n} divided by m^{n}.

This law is known as *difference of powers* and explains how to subtract indices.

3^{6-4} = 3^{6} / 3^{4} = 729 / 81 = 9 = 3^{2}

### Multiplying Exponents

b^{n × m} = (b^{n})^{m}

The number b to the product n × m of the powers equals (b to the power of n) to the power of m.

This law is known as *multiplication of powers* and explains how to multiply exponents.

4^{2 × 3} = (4^{2})^{3} = 16^{3} = 4096 = 4^{6}

### Multiplying Exponents with Different Bases

b^{m} × c^{m} = (bc)^{m}

The multiplication of b to the power of m by c to the power of m equals the product (b × c) to the power of m.

This rule is known as *power of a product*, for indices of different bases.

5^{2} × 3^{2} = 25 x 9 = 225 = (5×3)^{2} = 15^{2}

### Dividing Exponents

b^{n} / c^{n} = (b/c)^{n}, c ≠ 0

The numbers b to the power of n divided by c to the power of n is equal to the quotient of b and c to the power of n.

This law is known as *power of quotient*, ruling the division of quotients.

4^{2} / 2^{2} = 16 / 4 = 4 = (4/2)^{2} = 2^{2}

Make sure to understand that b^{n} ≠ n^{n}, unless n=b.

That is, exponentiation is not commutative. And it isn’t associative either.

In the next paragraph you can find our calculator.

## Exponent Calculator

Our calculator st the top of this page is straightforward: Enter the base using decimal notation, the insert the power (which ought to be a decimal, too).

Bookmark us now, and note that frequent numbers on our site include, but are not limited, to:

In the next section we are going to discuss fractional powers, they correspond to the n-th root of a number of the type y = b^m.

Of course, exponent laws are there, too.

## Rational Exponents

Rational Exponents, also called fractional exponents go beyond elementary algebra by defining

^{m},

If b is a positive real number and n is an even, positive integer, then there are exactly two real solutions such that to x^n = b; the positive solution is called principal nth root of b.

If b is a negative real number, and n is an even, positive integer, then there is no solution in the set of real numbers R.

If b is a real number and n is an odd, positive integer, then there is exactly one real solution.

The solution is positive if, and only if, b is positive, and negative if, and only if, b is negative.

In particular, for p = 2, and q = 1 we get n = 2, thus

With

and

the laws of exponents are as follows:

Special cases:

In the next paragraph we review the concept of index or power of a number.

## What is an Exponent?

Above, we have defined both, *exponentiation* as well as *exponent*.

In math, the exponent n is a rational number also called index or power, usually written in superscript or with a caret as b^n.

- If the index n is 0, then b
^{n}represents the number one. - If the power n is an positive integer, then b
^{n}stands for the product n times b. - If the power m / n is a fraction of two integers different from zero, then b
^{m/n}denotes the nth (principal) root of a number b^{m}, x =, such that x ^{n}= b^{m}.

Frequent bases include, among others, powers of ten such as 10^{3} for 1000 and 10^{-2} for 0.001, as well as powers of two, like 2^{5} = 32 and 2^{10} = 1024 for example.

Whereas powers of two, aka binary system, are heavily used in computing, powers of ten correspond to the decimal system, in which the nth power is written as one followed by n 0’s.

BTW: You can locate many numbers in exponential notation using the form located in the sidebar for visitors using a desktop computer, and at the end of this article for users with a mobile device.

Upon entering your search term, you will be taken to a result page including all relevant posts.

Give it a try now looking x to the power of ten up; x means a base number of your choosing.

Ahead are the FAQs about the subject matter, as well as the summary of our content.

## Bases

In exponentiation, the term *base* means the variable b in an expression of the form b^{n}.

There a few particular bases, such as, for instance, one and negative one.

### Powers of Negative One

With n = 0, ±1, ±2, ±3, … the power of negative one alternates:

(-1)^{n} = 1 if n is even; -1 if n is odd.

### Powers of One

With n = 0, ±1, ±2, ±3, … the power of one remains one:

1^{n} = 1

As indicated by the minus in ±, both particular base equations above are valid for the reciprocal, too.

## Exponentiation

You have reached the final part of our article, which we summarize using an image:

- What is standard notation?
- What does exponent mean?
- What are exponents?
- What is exponent?
- What is a exponent?
- What are exponents in math?
- What is an exponent in math?
- What are the laws of exponents?

Taking into account our information, you should be in the position to answers them all.

Yet, if there is something which needs clarification, drop us a message in the form at the end of this page.

Alternatively, you may send us an email, and we will respond as soon as possible.

If you are happy with our content, the hit the social buttons to the left or at the bottom of your screen.

Thanks for visiting us.

More Information: